|
Pagina en construcción
|
CD-ROMLos Discos Ópticos, Tipos, y Cuáles son sus Usos
Los discos ópticos presentan una capa interna protegida, donde se guardan los bits mediante distintas tecnologías, siendo que en todas ellas dichos bits se leen merced a un rayo láser incidente. Este, al ser reflejado, permite detectar variaciones microscópicas de propiedades óptico-reflectivas ocurridas como consecuencia de la grabación realizada en la escritura. Un sistema óptico con lentes encamina el haz luminoso, y lo enfoca como un punto en la capa del disco que almacena los datos. Las tecnologías de grabación (escritura) a desarrollar son: · Por moldeado durante la fabricación, mediante un molde de níquel (CD-ROM y DVD ROM), · Por la acción de un haz láser (CD-R y CD-RW, también llamado CD-E), · Por la acción de un haz láser en conjunción con un campo magnético (discos magneto-ópticos - MO). Los discos ópticos tienen las siguientes características, confrontadas con los discos magnéticos: · Los discos ópticos, además de ser medios removibles con capacidad para almacenar masivamente datos en pequeños espacios -por lo menos diez veces más que un disco rígido de igual tamaño- son portables y seguros en la conservación de los datos (que también permanecen si se corta la energía eléctrica). El hecho de ser portables deviene del hecho de que son removibles de la unidad.
Asimismo, tienen bajo costo por byte almacenado. Los CD-ROM se copian (producen) masivamente La mayor capacidad de los discos ópticos frente a los magnéticos se debe al carácter puntual del haz láser incidente, y a la precisión del enfoque óptico del láser. Ello permite que en una pista los bits estén más juntos (mayor densidad lineal), y que las pistas estén más próximas (más t.p.i) Los CD son más seguros en la conservación de los datos, dado que la capa que los almacena es inmune a los campos magnéticos caseros, y está protegida de la corrosión ambiental, manoseo, etc., por constituir un "sandwich" entre dos capas transparentes de policarbonato. Por otra parte, la cabeza móvil -que porta la fuente láser y la óptica asociada- por estar separada a 1 mm. de la superficie del disco, mmca puede tocarla. Por ello no produce en ella desgaste por rozamiento, ni existe riesgo de "aterrizaje", como en el disco rígido con cabezas flotantes. Tampoco el haz láser que incide sobre la información puede afectarla, dada su baja potencia. Son aplicaciones comunes de los discos ópticos: las bases de datos en CD ROM para bibliotecas de datos invariables (enciclopedias, distribución de software, manuales de software, demos, etc.), y para servidores de archivos en una red local, así como el uso de CD-R (gravables por el usuario) para copias de resguardo seguras, y las bibliotecas de imágenes. Puede estimarse entre 10 y 15 años la permanencia de la información en un CD ROM común, dado que la superficie de aluminio que contiene la información se oxida muy lentamente en ese lapso, salvo que sea sometida a una protección anti-óxido especial, o sea de oro. En un CD-R este tiempo será mucho mayor, por presentar oro la fina capa metálica interior. Los CD-ROMs se leen mediante un detector que mide la energía reflejada de la superficie al apuntar a esta un láser de bajo poder. Los agujeros, que se denominan huecos (pits), y las áreas sin laserizar entre estos, que se denominan zonas planas (lands), producen una diferente reflectividad del haz de láser, lo que hace posible distinguir entre ambos y recibir dos estados posibles: 0 y 1. Pero no se indica un 0 o un 1 con un land o un pit, sino que un pit indica el cambio de estado, o sea de 0 a 1 o de a 1 a 0, y según la cantidad de lands que haya, el estado se mantiene estable, o sea mientras no se cambie de estado se mantiene una zona de lands(Ver figura 1). De esta manera, se trata de realizar la mínima cantidad de huecos (pits) posibles en el disco, y así poder escribir más rápidamente. Los CD-Roms están constituidos por una pista en espiral que presenta el mismo número de bits por centímetro en todos sus tramos (densidad lineal constante), para aprovechar mejor el medio de almacenamiento, y no desperdiciar espacio como sucede en los discos magnéticos. Es por esto que en la lectura y grabación de un CD, a medida que el haz láser se aleja del centro del disco, la velocidad debe disminuir, ya que en el centro el espiral es de menos longitud que en los bordes. Alternando las velocidades se logra que la cantidad de bits leídos por segundo sea constante en cualquier tramo, sea en el centro o en los bordes. SI esta velocidad sería constante, se leerían menos bits por segundo si la zona esta más cerca del centro, y más si esta más cerca de los bordes. Todo esto significa que un CD gira a una velocidad angular variable. Para poder lograr que los CDs tengan igual densidad en cualquier tramo de la espiral, en la grabación, el haz láser emitido por la cabeza (que se mueve en línea recta radial desde el centro al borde del plato) genera la espiral a velocidad lineal constante (CLV), esto significa que la cantidad de bits grabados por segundos será constante. Pero para poder lograr esto, y mantener una densidad lineal constante y la pista en espiral, será necesario que el CD gire a una velocidad angular variable (explicado anteriormente). Por lo tanto, por girar un CD a una velocidad angular variable, y ser escrito a velocidad linear constante, se escriben y leen la misma cantidad de bits por segundo y por centímetro, cualquiera sea la posición del mismo. Mientras que cada vuelta de la espiral contendrá más o menos bits según si este más cerca del centro o del borde. Uno de los problemas del CD-ROM es que la impresión de discos de aluminio con cubierta plástica no es muy precisa, por lo cual la información digital contiene, por lo general, muchos errores. Existen dos formas para corregir estos errores:
Para ver el gráfico seleccione la opción ¨Bajar trabajo¨ del menú superior
Un tipo de CD-ROM de 60 min. de duración (también son comunes los de 74 min.) presenta la espiral constituida por 270000 marcos conteniendo cada uno 2048 bytes (2 K) para datos. En total se pueden almacenar: 527 Mb. La espiral presenta unas 16000 vueltas por pulgada radial (t.p.i). Se debe tener en cuenta que en el espesor de un cabello entran 50 vueltas. Antes de grabar el disco "maestro", un programa fracciona cada archivo a grabar en marcos de 2048 bytes de datos, y les agrega, conforme a los campos de un marco:
Para poder localizar un marco dentro del CD, este se identifica por una dirección formada por 3 variables. Teniendo en cuenta el CD de 60 minutos (antes explicado), las primeras dos variables de la dirección son los minutos y los segundos horarios (mm:ss), los cuales obviamente varían desde 0 hasta el 59. El comienzo del espiral, o sea el centro del CD, tiene la dirección 00:00, este va progresando según va creciendo el espiral, hasta llegar a la dirección 59:59. Pero estas direcciones no son suficientes para localizar cada marco, de ahí viene la utilidad de la tercera variable. Esta variable, indica el número de marco, teniendo en cuenta los minutos y segundos, y sus valores pueden ser desde el 0 hasta el 74. O sea, que por cada segundo, hay 75 marcos. De esta manera hay 60 valores posibles para los minutos y los segundos, y 75 para cada marco, hay 270 000 direcciones posibles, por lo cual existe una dirección para cada marco. Teniendo en cuenta esto, podemos deducir, que por ejemplo el marco 155, tendrá la dirección 0:2 4. Esto se deduce ya que si por c/seg existen 75 marcos, si la dirección es 2 seg, esta pertenece al marco 150, entonces para direccionar el marco 155, el marco es el numero 4. En informática se usan los siguientes tipos de discos ópticos:
Si bien los CD-ROM son los CD más usados para almacenar programas y datos, las unidades lectoras de CD actuales también permiten leer información digital de otros tipos de CD basados en la misma tecnología, con vistas a aplicaciones en multimedia, como ser: CD-DA (Digital Audio): es el conocido CD que escuchamos en un reproductor de CD para audio. Podemos escuchar la música que contiene mientras trabajamos con una PC, o bien mezclarla en usos multimedia. CD-I son las iniciales de disco compacto interactivo. De tecnología semejante al CD-ROM, puede combinar datos, audio y video, conforme a un estándar multimedia propuesto por Phillips y Sony en 1986. Este también define métodos para codificar y decodificar datos comprimidos, y para visualizarlos. Almacena 72 minutos de audio digital estéreo ó 19 horas de conversación de calidad en mono, ó 6000 a 1500 imágenes de video - según la calidad deseada- que pueden buscarse interactivamente y mezclarse. Requiere una plaqueta inteligente especial en el computador. Al usuario le es factible interactuar mientras el CD es reproducido -en una unidad lectora compatible- mediante el mouse, o un dispositivo para disparar sobre un punto infrarrojo emitido ("thumbstick"). CD-ROM XA (de extended Architecture): es un estándar para sonido e imagen propuesto por Phillips, Sony y Microsoft, extensión de las estructuras de un CD-ROM, que especifica la grabación comprimida de sonido en un CD-ROM por el sistema ADPCM, también empleado en CD-I. Esto hace que un CD-ROM XA sea un puente entre CD-ROM y CD-I. Photo CD: el estándar elaborado en 1990 por Phillips y Eastman Kodak específica el procedimiento para convertir fotografías de 35 mm en señales digitales para ser grabadas en un CD-R en una o varias sesiones. La grabación se realiza durante el revelado de la película. Así se guardan cientos de fotos color en un CD-R. Los Photo CD y Video CD son CD-ROM XA "Bridge Format", que pueden leerse en lectoras CD-I como en lectoras propias de computadoras. DVI es un tipo de CD ROM que integra video, televisión, gráficos con animación, audio multicanal y textos. Necesita plaquetas adicionales. Merced a una técnica de compresión de datos, éstos ocupan 120 veces menos lugar, permitiendo ver una hora de video de 30 imágenes por segundo. A esta velocidad, dado que una imagen de TV ocupa 600 KB, para ver un segundo se requieren 600 KB x 30 = 18 MB. De no existir compresión, los 600 MB de un CD ROM 30 seg. de visión. Los reproductores de CD actuales»sólo permiten unos 600/18 pueden leer CD-ROM, CD-R (de varias sesiones), CD-ROM XA, Photo CD, Video-CD, CD-I, CD-plus, y CD-DA. Cómo se Fabrican los CD-ROM, y se Graban los Sectores de la Espiral En un CD-ROM la espiral que codifica la información grabada es moldeada (en máquinas que fabrican en serie miles de CD iguales) en un molde de níquel, en el cual a temperatura se inyecta plástico. A dicha espiral así moldeada se le deposita una fina capa de aluminio, y es protegida por una capa transparente superior. Más en detalle, con el disco visto desde abajo, la superficie grabada presenta una sucesión de hoyos ("pits") separados por espacios planos ("lands"), que forman una pista en espiral. De este modo, un CD-ROM es grabado por el fabricante -en serie con otros iguales- pudiendo posteriormente ser sólo leído por el usuario en su unidad lectora de CD-ROM. En ésta un haz de láser puntual sigue la pista en espiral metalizada que contiene la información, y al ser reflejado por dicha pista permite detectar la longitud de los "pits" y "lands" que codifican la información almacenada. Por presentar un CD-ROM más bytes para código detector de errores que un disco CD-DA, no es factible leerlo en una reproductora para CD de audio. La información digital (bits) en un CD-ROM -al igual que en un CD DA- se debe grabar en bloques (también llamados sectores) contiguos de una espiral. Un tipo de CD-ROM de 60 min. de duración (también son comunes los de 74 min.) presenta la espiral constituida por 27000 sectores conteniendo cada uno 2048 bytes (2 K) para datos. En total se pueden almacenar: 2048 bytes x 270.000 = 552.960.000 bytes = 552.960.000/1.048.576 MB = 527 MB. Antes de grabar el disco "master", punto de partida para fabricar miles de CD ROM, un programa fracciona cada archivo a grabar en sectores de 2048 bytes de datos, y les agrega, conforme a los campos de un sector:
Cada uno de los 270.000 bloques así conformados se va grabando en un disco "master" de vidrio, recubierto en una de sus caras por una película que atacará un haz láser, para formar en ella una espiral constituida por hoyos ("pits"). Para ello, se inserta el disco "master" de vidrio en un dispositivo de grabación, que presenta un cabezal que porta un haz láser de potencia, el cual se mueve en línea recta desde el centro al borde del disco. Este movimiento combinado con el de giro del disco, da como resultado que sobre la superficie del disco pueda formarse una espiral que crece desde el centro. Cada vez que el haz es activado, el calor que genera la punta microscópica del mismo (menor que una milésima de mm.) ataca la película que recubre el vidrio del "master" -en la cual está enfocado- generando en ella un hoyo que conformará la espiral. Más en detalle, una computadora envía al cabezal, uno por uno, los bits a grabar, y en correspondencia se enciende o apaga el haz láser. Si el haz se activa, quema un punto microscópico en la pista en espiral que se va generando (de ancho algo menor que el punto), creando en ella un hoyo. De esta forma dicha pista se va conformando por hoyos ("pits"), separados por espacios no atacados por el haz, los "lands". En un tipo de grabación corriente, un "land" representa un uno, y el "pit" que le sigue representa uno o más ceros, según sea la longitud de dicho "pit" (y el tiempo involucrado). La espiral presenta unas 16.000 vueltas por pulgada radial (t.p.i). En el espesor de un cabello entran 50 vueltas. En total tiene 22.190 vueltas. Cada archivo queda grabado en sectores sucesivos (que forman lo que suele denominarse un "track", aunque la pista en espiral es una sola). A continuación de un archivo sigue otro en la espiral, como en una cinta magnética. Luego de grabar el disco "maestro" se fabrican réplicas metálicas (resistentes a la manipulación) de su superficie, por duplicación electrolítica, resultando otros discos de metal, "negativos" y "positivos" del "maestro" original. Este servirá de molde para fabricar en serie los CD de plástico. Para fabricar cada CD, por inyección de plástico (policarbonato que se derrite en el molde de níquel citado), se moldean la espiral -réplica de la existente en el "master"- junto con la capa inferior que le sirve de protección, constituyendo una sola pieza transparente. (figura 2.35 a). Por ser el molde un "positivo" del master, la espiral moldeada será un "negativo", o sea los "pits" como "mesetas montañosas" en su superficie superior. Esta superficie "montañosa" en espiral, debe ser metalizada (figura 2.35 b) con una fina capa reflectante de aluminio (u oro); y en otro paso deberá ser cubierta por una capa protectora de resina acrílica, sobre la cual se imprimirá la etiqueta, que conforma el "el techo" plano del CD. Visto el CD de--,de abajo presenta una superficie plana, sobre la cual está la espiral "montañosa" recubierto por la capa de metal, y sobre ésta la capa protectora transparente donde va la etiqueta. La figura 2.35 c es una ampliación de la 2.35 b, con un corte en "mesetas". Sirve para mostrar que en una lectura, el haz láser -que llega al CD por su cara inferior y atraviesa su capa transparente protectora inferior- si pasa por una "meseta" es reflejado por la capa de aluminio que la recubre, siendo así la meseta sensada desde abajo por el haz como un hoyo ("pit"). Los hoyos vistos desde la cara inferior del CD son como se indica en la figura 2.33. La pista en espiral de un CD presenta el mismo número de bits por centímetro en todos sus tramos (densidad lineal constante), para aprovechar mejor el medio de almacenamiento. Un disquete gira a velocidad angular constante (CAV: constant angular velocity), como ser, cada vuelta siempre en 1/5 seg. Si tiene 18 sectores por pista, en cada vuelta leerá 18 sectores en 1/5 seg, cualquiera sea la pista. De esta forma, con CAV, se logra fácil que la cantidad de bits que se leen por segundo (velocidad de transferencia interna) sea la misma, sin importar qué pista sea. Análogamente en un CD-ROM, por tener su pista en espiral igual densidad en cualquier tramo, a medida que ella es leída desde el centro al borde, -y por ende también cuando es grabada- la velocidad de giro debe disminuir continuamente, para que la cantidad de bits leídos por segundo sea constante en cualquier tramo. Dado que la espiral tiene igual cantidad de bits por cm en cualquier tramo, una vuelta interna guardará menos bits que otra más externa, por tener menor longitud. Si la espiral se leyera a velocidad de giro constante, durante una revolución del disco, una vuelta más interna de la espiral proporcionaría menos bits que otra más externa. De ser así, la lectura de una vuelta más interna de la espiral al ser leída proveería menos bits por segundo que otra más externa. Para tener igual densidad en cualquier tramo de la espiral, en la grabación del "master", el punto luminoso del haz láser emitido por la cabeza (que se mueve en línea recta radial desde el centro al borde del plato, incidiendo siempre perpendicular al disco) genera la espiral a velocidad lineal constante (constant linear velocity-CLV, en cm/seg), para que sea constante la cantidad de bits grabados (y por ende leídos y transferidos) por segundo. Para que esto ocurra, el disco en el centro gira a una cierta velocidad angular (vueltas por segundo), que debe disminuirr permanentemente a medida que la cabeza se aleja rectilineamente hacia el borde del disco. Resulta así, que la velocidad de rotación variable de un CD no se debe a su pista en espiral. Del mismo modo (figura 2.3), en un disquete, un sector más interno ocupa menos longitud de pista (mayor densidad de bits por cm) que otro más externo (menor densidad). Sintetizando: por girar un CD a velocidad angular variable, y ser escrito a velocidad linear constante, se escriben (y leen) la misma cantidad de bits por segundo y por centímetro, cualquiera sea el sector del mismo Los sectores grabados, por contener igual cantidad de bytes, presentarán igual longitud en centímetros, dado que la cantidad de bits por centímetro es igual en cualquier porción de la espiral. El número de sectores escritos en cada vuelta de la espiral es un número variable, y en general no entero. Cómo se Lee un CD en una Unidad Lectora de CD-ROM El hardware de una unidad lectora de CD (CD drive o CD player) comprende, básicamente: · Mecanismos y motor de bandeja para insertar y retirar el CD. · Electrónica de este periférico (IDE o SCSI), basada en un microcontrolador, con programas en EPROM para gobernar la mecánica y la electrónica de la unidad, y para detectar y corregir errores de lectura. · Motor de giro del disco. · Motor para movimiento (radial), hacía delante o atrás, de la base que soporta el cabezal de lectura. · Diodo láser y óptica auxiliar. · Óptica móvil de enfoque (con motor). · Subsistema de óptica móvil para seguimiento de la pista. · Diodos foto-sensores de las señales ópticas reflejadas en el CD, y óptica auxiliar. En un tipo de mecanismo corriente, al apretar un botón la bandeja de inserción ("caddy") sale hacia fuera, y el CD es puesto en ella (figura 2.36). Al pulsar nuevamente dicho botón, la bandeja vuelve hacia adentro. En un determinado momento de su trayecto empuja también hacia adentro a dos "mandíbulas" que se cierran paulatinamente (como una dentadura), hasta que el agujero central del disco queda prisionero (a través del hueco la bandeja) entre dos piezas circulares giratorias imantadas, vinculadas a esas mandíbulas. Así el disco queda centrado, y levantado respecto de la bandeja, a fin de no rozarla al girar. Más en detalle, al final del recorrido de la bandeja -cuando se cierran por completo las mandíbulas- la pieza circular ligada a la mandíbula superior atrae magnéticamente al cuerpo de la pieza circular de la mandíbula inferior, vinculada al eje de un motor de giro, para asegurar que el borde interno del disco quede aprisionado entre dichas piezas, a fin de que pueda girar correctamente y esté centrado, como se planteó. La mandíbula inferior presenta una base que contiene el motor de giro, el cabezal con el láser, y un sistema con dos guías (figura 2.37) para desplazar hacia atrás o adelante (mediante otro motor) el cabezal respecto a esta base, en dirección radial al disco. Además existe un bus flexible, para conectarla a la electrónica IDE. Para que en todos los puntos grabados en espiral en el CD pueda incidir el haz láser generado por el cabezal, a medida que éste avanza radialmente hacia el borde del CD, se disminuye la velocidad de giro del disco; e inversamente, si el cabezal avanza hacia el centro, el CD debe girar más rápido. O sea, que al pasar el haz de un punto al siguiente de la espiral grabada, la velocidad de giro del disco ya varió. El cabezal está a 1 mm. de la superficie del CD, generando un haz láser infrarrojo no visible, de baja potencia (pero peligroso para la vista), con un sistema de autoenfoque automático permanente en la capa de aluminio del CD, para incidir sobre "pits" y "lands" de la espiral grabada en esta capa (figuras 2.38 y 2.39). Si en su movimiento rectilíneo radial a velocidad constante, el punto luminoso del haz incide en un "land" de la espiral grabada (cuya velocidad de rotación varía constantemente), el haz láser es reflejado por el aluminio, con mayor intensidad que si incide en un "pit". Un diodo fotosensor detecta estas diferencias de intensidad de luz láser reflejada, a fin de recuperar -bajo la forma de impulsos eléctricos- los ceros y unos almacenados. Dichos pulsos según su duración representan distinto número de ceros, mientras que tanto el comienzo como el final de un pulso representa un uno. A un nivel de mayor detalle, en el cabezal existe un sistema de lentes móviles no dibujado -gobernado por la electrónica de la unidad lectora de CD, basada en un microprocesador- que tiene como función enfocar el haz láser en cada punto de la espiral grabada, formada en la capa metálica del CD. Esto es necesario, dado que el CD no es perfectamente plano, por presentar deformaciones (± 0,6 mm) por el proceso de fabricación. También dicha electrónica comanda otro subsistema para desplazar levemente el haz sobre la superficie grabada del CD, de modo que en la lectura el haz siga correctamente sobre la pista en espiral grabada. Los CD que almacenan 650 MB y 1,3 GB se graban típicamente según al método PPM (pulse position modulation) por el cual (figura 2.39) se representa un uno haciéndole corresponder un "land" de la espiral, al cual sigue un número de ceros representados por la longitud del "pit" que sigue a dicho "land". Los bytes a grabar están recodificados según el código EFM, a tratar. En la lectura de un CD (figura 2.38) el diodo láser del cabezal genera un haz de luz láser infrarrojo perpendicular a la superficie del disco. En su camino hacia el disco, atravesará un prisma triangular sin desviarse, y luego pasará por otra lente (o por una bobina en la cual circula corriente eléctrica) para que el haz sea enfocado como un punto en la capa reflectante de aluminio donde están los pits y lands de la espiral. Al incidir el haz en la primer capa transparente protectora del CD, tiene un diámetro de 1 mm (figura 2.40). Atravesando esta capa los rayos se difractan (desvían), llegando luego a tener el haz un diámetro de unas 0,8 milésimas de mm. Cuando incide sobre la pista en espiral (cuyo ancho es de 0,5 milésimas). En PPM un "land" es menor que 0,8 milésimas, por lo que el haz mmca puede incidir totalmente en un "land": parte de los rayos incidirán en el "land", y parte en el "pit" vecino (figura 2.39). Dado que un "pit" está a una profundidad de un cuarto de longitud de onda de un "land", la porción de rayos que inciden en el "pit", antes de hacerlo recorren un cuarto de onda más que los que inciden en el "land". El haz luego de incidir en el aluminio, se reflejará. Los rayos que incidieron en el "pit" después de reflejarse harán nuevamente un cuarto de onda más de camino que aquellos que incidieron en el "land". En definitiva, los rayos incidentes en el "pit" recorrerán media onda (un cuarto más un cuarto) más que los incidentes en el "land". El efecto resultante, es que el haz que incide parte en un "land" y parte en un "pit", al ser reflejado, llega al diodo fotosensor con muy poca intensidad luminosa (luego de pasar por el objetivo y ser reflejado por la cara de un cristal que por su inclinación oficia de espejo), por anularse entre sí los rayos desfasados en media onda provenientes del "land" y del "pit". En cambio, cuando el haz incide en un "pit" (figura 2.39), en cada punto del mismo todos los rayos reflejados recorrerán la misma distancia, reforzándose mutuamente (todos en fase) provocando una fuerte intensidad luminosa al llegar al fotodiodo. El método de registro PWL (Pulse Width Modulation) permite una mayor densidad de almacenamiento. Los "lands" dejan de servir para codificar un solo uno, pudiendo codificar uno o más ceros como los "pits". La transición de "pit" a "land" o la inversa codifica un uno (figura 2.41); y la distancia entre dos transiciones (dos unos) representa un cierto número de ceros, según sea su longitud (y el tiempo transcurrido). Existen unidades lectoras CD-ROM de tipo 2x, 4x, 6x y 8x,.... de doble, cuádruple, séxtuple, óctuple, ... velocidad que la velocidad simple de una unidad CD de audio estándar, respectivamente. Las mismas tienen, en consecuencia, tiempos de acceso y transferencia respectivamente más rápidos que la velocidad CD estándar. Por ejemplo, las del tipo 6x tienen un tiempo de acceso de unos 120 mseg (para 1/3 de carrera del cabezal entre extremos, que se duplica si la carrera es entre extremos), y velocidad de transferencia de 900 Kbytes/seg, casi 1 MByte/seg (contra 600 Kbytes/seg de las 4x, en correspondencia con el 50% de diferencia de velocidad). Las unidades 6x presentan un buffer de datos de 256 Kbytes. En la performance de una lectora intervienen la eficiencia del controlador y e1 tamaño del buffer. Cómo Son y se Escriben los CD para Grabación por un Usuario Designados CD-R Un CD-R (CD Recordable, o sea grabable) puede grabarse por cualquier usuario que tenga conectado en su computadora el periférico "unidad grabadora de CD" (u optar por pagar este servicio). En ésta, un haz láser graba en una espiral parcialmente pregrabada de fábrica –construida en una capa de material orgánico- un equivalente de "pits" y "lands", requeridos para almacenar los datos. Dicha espiral ya viene formateada por hardware con las direcciones de los sectores, y sirve de guía para el láser. El CD-R sobre dicha capa orgánica con la espiral, que es translúcida, presenta otra capa de oro para reflejar el haz láser en cada lectura (figura 2.43). Estas dos capas están protegidas por otras de policarbonato. La capa orgánica translúcida es de resina o pigmento verde (generalmente cyanina). Durante el proceso de grabación (figura 2.42) de los datos, el equivalente de un "pit" se establece al decolorarse -merced al calor puntual generado por el haz láser- puntos de la capa orgánica de pigmento (típicamente verde). 0 sea que un CD-R simula ópticamente los "pits" y "lands" físicos de un CD-ROM. Después de ser grabado, un CD-R se convierte de hecho en un CD-ROM, que puede leerse en cualquier unidad lectora de estos discos -de la forma antes descripta- sin posibilidad de ser regrabado. Para la lectura de cada punto de la espiral (figura 2.43), el haz láser incidente atraviesa la capa de policarbonato transparente y la capa de pigmento, hasta llegar a la capa superior metalizada cm oro, donde se refleja (en ella está enfocado). El haz reflejado -correspondiente al punto leído- es sensado por un fotodiodo, pasando ahora primero por la capa de pigmento y luego por la transparente. Según que el punto de la capa de pigmento por donde pasó el haz incidente (y retomó reflejado) esté decolorado ("pit") o no ("land"), el haz reflejado tendrá distinta intensidad, lo cual será detectado por el fotodiodo. Puntos sucesivos de igual intensidad luminosa constituirán un "pit" o un "land", según el valor de la intensidad detectada. No es necesario grabar toda la espiral de un CD-R de una sola vez (sesión). Es factible hacerlo en tantas "sesiones" como archivos se quiera incorporar a lo largo del tiempo, hasta completar la capacidad del CD-R (como ser, 650 MB). Una vez grabada una porción de la espiral, no puede borrarse y ser regrabada. Por tal motivo, los CD-R también se denominan CD-WO (Write Once, o sea de una escritura). Esta imposibilidad de regrabación ha motivado su uso en el ámbito contable y financiero, pues garantiza datos no borrables para auditorias. Por lo general, los CD-R se reconocen a primera vista, por el color dorado de su etiqueta. Los primeros 4 mm de ancho radial de una espiral de un CD-R o de un CD-ROM (figura 2.44) constituyen el "lead in", que antecede a la zona de datos. Esta es de unos 29 mm de ancho, y le sigue el "lead out" de 1 mm. En un CD-R, el "lead-in" es precedido por dos áreas necesarias para alinear el haz láser a fin de poder grabar lo que sigue. Cada sesión de grabado de la espiral debe comenzar con la escritura de un "lead in", y terminar con la de un "lead out". A su vez, cada "lead in" debe contener la tabla de contenidos ("Tabla of contents" TOC), índice de los datos grabados en la sesión correspondiente. Debe mencionarse que un CD-R grabado en "multisesiones" debe ser leído por un lector de CD-ROM apropiado (como son los actuales). De no serlo, sólo leerá la primera sesión. Existen grabadoras/lectoras de CD-R de varias velocidades (x1, x2, x4 ... ). A mayor velocidad debe usarse un láser más potente para producir más calor, de forma de poder atacar adecuadamente los puntos requeridos en la espiral. Existen discos vírgenes CD-R para distintas velocidades, cuyo sustrato disipa distinta cantidad de calor en correspondencia con su velocidad de grabación. Los discos WORM ("Write Once Read Many") fueron los precursores de los CD-R. La tecnología WORM no está normalizada: ciertos discos sólo pueden insertarse en unidades de un determinado fabricante. Estos discos son de 5 1/4", y vienen en "cartuchos" semejantes a los de plástico que protegen los disquetes magnéticos de 3 1/2", para ser insertados en las unidades correspondientes. Además existen discos con datos grabados en espiral, y otros con pistas concéntricas. Según la norma seguida por los fabricantes, un cartucho de 5 1/4" puede tener ya sea 640 MB ó 1,2 GB. Discos de 12" usados en redes pueden guardar más de 6 GB. Por su capa orgánica los CD-R no deben ser expuestos a excesivo calor (por ejemplo dentro de un automóvil o sol directo) o humedad, pues pueden reducir su vida útil, o ser inutilizables por filtraciones de cyanina. También se debe cuidar de no escribir con bolígrafo su etiqueta, dado que la presión ejercida puede dañarlos. Una unidad CD-R puede leer un CD-ROM, y viceversa.
|
Envíe un mensaje a
dj_elizalde@hotmail.com con preguntas o comentarios sobre
este sitio Web.
|